Section 6.5: Financial Applications Involving Exponential Functions

1. Simple Interest:

Simple interest is calculated only in terms of the original amount invested, not on the accumulated interest.

Simple Interest Formula:
$$A = P + \Pr t$$
 or $A = P(1+rt)$

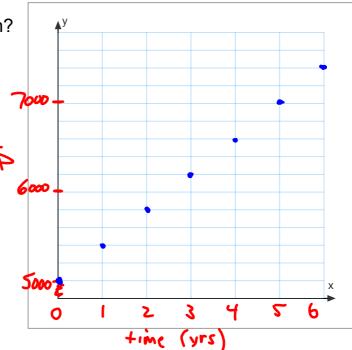
where P is the principal amount

t is the time in years

r is the interest rate per annum (as a decimal)

NOTE: A is the sum of the principal (P) and the accumulated interest (Prt)

Example 1:


Kyle invested his summer earnings of \$5000.00 at 8% simple interest, paid annually.

a) Create a table of values and graph the growth of the investment for 6 years using time, in years, as the domain and the value of the investment as the range.

Time	Value of Investment (\$)	
(years)		
0	5000	
1	5000 + 5000 (0.08)(1) = 5400	
2	5000 + 5000 (0.08)(2) = 5800	
3	5000 + 5000(0.08)(3) = 6200	
4	6600	
5	7000	
6	7400	

a) What does the shape of the graph tell you about the type of growth?

linear graph, so growth is constant goes up by same amount \$ every year.

b) Why is the data discrete?

Annual interest rate paid once per year.

c) What do the y-intercept and slope represent for the investment?

y-intercept => initial money invested

slope => rate at which money is growing

d) What is the value of the investment after 10 years?

$$A = P + Prt$$
 $A = 5000 + 5000 (0.08)(10)$
 $A = 9000$

e) How much interest was earned after 10 years?

\$ 4000

2. Compound Interest:

Compound interest is determined by applying the interest rate to the sum of the principal and any accumulated interest.

Compound Interest Formula:

$$A = P(1+i)^n$$

where A is the future value

P is the principal amount

i is the interest rate **per compounding period** (expressed as a decimal)

t is the time in years

n is the **number of compounding periods**

n is NOT the number of years!

Refer to previous example of \$5000.00 (*P*) in a savings account earning an annual interest of 8%.

Time (years)	Amount of Annual Interest	Value of Investment (\$)	
0	0	5000	
1	400	5000(1.08) = 5400	
2	432	5000(1.08) = 5832	
3	466.56	$5000(1.08)^3 = 6298.56$	

NOTE: The accumulated interest and the value of the investment do not grow by a constant amount as they do with simple interest.

An exponential regression to model the investment would result in the equation: $y = 5000(1.08)^x$

Note how this compares to: $A = P(1+i)^n$.

Investments can also have daily, weekly, monthly, quarterly, semi-annually, or annually compounding periods.

impounding periods.				
Compounding Period	Number of Times Interest is Paid	Interest Rate per Compounding Period	$A = P(1+\epsilon)^{\prime\prime}$	
Daily	365 times per year	$i = \frac{\text{annual rate}}{365}$		
Weekly	52 times per year	$i = \frac{\text{annual rate}}{52}$		
Bi-Weekly	26 times per year	$i = \frac{\text{annual rate}}{26}$		
Semi-monthly	24 times per year	$i = \frac{\text{annual rate}}{24}$		
Monthly	12 times per year	$i = \frac{\text{annual rate}}{12}$		
Quarterly	4 times per year	$i = \frac{\text{annual rate}}{4}$		
Semi- annually	2 times per year	$i = \frac{\text{annual rate}}{2}$		
Annually	1 time per year	$i = \frac{\text{annual rate}}{1}$		
			1	

For example, if \$5000 is invested at 6% compounded monthly,

$$i = \frac{\text{annual rate}}{12} = \frac{0.06}{12} = 0.005$$

The compound interest formula is defined as:

$$A = 5000(1.005)^n$$

where n is the number of months, NOT the number of years

Example 2: Complete the table if the interest rate is 4.8% per year.

Compounding Period	Number of Times Interest is Paid	Interest Rate per Compounding Period (i)
Bi-Monthly	6	$i = \frac{0.048}{6} = 0.008$
Monthly	12	12 = 0.004
Quarterly	4	(= 0.048 = 0.012
Semi-Annually	2	$i = \frac{0.048}{2} = 0.024$
Annually		$i = \frac{0.048}{1} = 0.048$

Example 3:

\$\\$5000\ \text{s invested, calculate A (the future value) using } A = $P(1+i)^n$ for each situation.

a) 11% per year, compounded quarterly for 3 years

$$i = \frac{0.11}{4} = 0.0275$$

$$A = 5000(1.0275)^{12} = \frac{5}{4}$$

$$A = \frac{5}{4} = \frac{12}{12}$$

b) 6.5% per year, compounded semi-annually for 3 years

$$A = 5000 \left(1 + \frac{0.065}{2}\right)^{2 \times 3}$$

$$A = 5000 \left(1.0325\right)^{6} = \frac{5}{6057.74}$$

c) 15.6% per year, compounded monthly for 2 years

$$A = 5000 \left(1 + \frac{0.156}{12} \right)^{12 \times 2}$$

$$A = 5000 \left(1.013 \right)^{24} = \frac{5}{6817.05}$$

Example 4:

0.06 \$3000 was invested at 6% per year compounded monthly

a) Write the exponential function in the form: $A = P(1+i)^n$

$$i = 0.06 = 0.005$$

b) What will be the future value of the investment after 4 years?

$$A = 3000(1.005)^{48}$$

 $A = {}^{4}3811.47$

Example 5:

An automobile that originally costs \$24 000 loses one-fifth of its value each year. What is the value after 6 years?

20%

0.20

$$A = 24000 (1 - 0.2)^{6}$$

$$A = 24000 (0.8)^{6}$$

$$A = \frac{4}{5}291.46$$

Example 6:

\$2000 is invested for 3 years at an annual interest rate of 9% compounded monthly. Lucas solved the following equation:

$$A = 2000(1.0075)^{3}$$
 36

Correct the error and solve the problem.

$$A = 2000(1.0075)^{36}$$

 $A = 2617.29

Example 7:

Nora is about to invest \$5000 in an account that pays 6% interest a year compounded monthly for the next 3 years. A different financial institution offers 6.5% interest a year compounded semi-annually for the next 3 years. Write a function that models the growth of Nora's investment for each situation. Should Nora invest her money in this financial institution instead? Explain why or why not.

$$i = \frac{0.06}{12} = 0.005$$
 $n = 3 \times 12 = 36$
 $A = 5000(1.005)^{36}$
 $A = 5983.40$

$$i = \frac{0.065}{2} = 0.0325$$
 $n = 3 \times 2 = 6$
 $A = 5000(1.0325)^{6}$
 $A = 6057.74$

Practice Questions:

p. 396 – 397, #10, 14