Section 5.2: Functions

Terms:
Domain: The first set of elements
Independent Variables
All x-values

Range: The Second set of elements
Dependent Variables
All y-values

Function: is a relation where each element in the domain is associated with only one element in the range

Example 1

1. Number of wheels
is the number of Wheels on

What if we reverse the order?

Is this a function?
No, because 2 wheels are on a motorcycle and a bicycle
Domain:
$\{1,2,3,4\}$
$\left\{\begin{array}{l}\text { Bicycle, Car, tricycle, motorcycle } \\ \text { unicycle }\}\end{array}\right.$
Is this a function?
Yes, Sinter each variable from the domain is Connected to onthlget Domain: I Value
$\left\{\begin{array}{l}\text { Bayle, ar trice } \\ \text { Range: }\end{array}\right.$ icy $\left.11 e\right\}$
$\{1,2,3,4\}$

Example 2

$$
\underline{(0,1)}(\underline{(2,1)}(\underline{3}, 2)(4,5)
$$

Is this a function?
yes.
Domain:
$\{0,2,3,4\}$

Is this a function?
Not
Domain:

Range:

Table/Ordered Pairs

Check the first column of the table or the first entry in each ordered pair for repetition.

- If there is no repetition the relation is a function.
- If there is repetition it is not a function.

Arrow Diagrams

If a relation is a function:

- Elements in the domain should only have one line coming from it.
- Elements in the range can have more then one line going to it.

For each of the following:
i) Determine whether the relation is a function
ii) Identify the domain and range of each relation that is a function.
a) The arrow diagram shows the relation between a number and its square root.

i) Not a function.
b) The table shows the cost of student bus tickets, C dollars, for different numbers of tickets n.

Number of Tickets, Cost, C
$\begin{cases}\boldsymbol{n} & (\$) \\ \boldsymbol{1} & 1.75 \\ 2 & 3.50 \\ 3 & 5.25 \\ 4 & 7.00 \\ 5 & 8.75\end{cases}$
i) Is a function.
i) Domain:
$\{1,2,3,4, \overline{5}\}$
Range:
$\left\{\begin{array}{l}\text { Range: } \\ 1.75,3.50, \overline{5} .25,7.00, \\ 8.7 \overline{5}\}\end{array}\right.$

Vertical Line Test:

- A method used to determine if the graph of a relation is a function.
- If a vertical line cuts a graph in more than one place it is not a function.
- Because there would be more than one y-value for that value of x.

Examples: Determine if each of the following graphs are functions.

IS Not a function

$$
y=2 \underline{x}+3
$$

FUNCTION NOTATION:
Equations that represent functions can be written in function notation.

- $f(x)$ \{read " f is a function of x "\}.

$$
f(x)=2 x+3
$$

- $f(x)$ can be thought of as another way of representing the y value.
When using function notation, the letters) inside the parentheses indicate the independent variables).

Example 1: Change the following equations into function notation and identify the independent variables:
a) $y=5 x+7 \quad f(x)=5 x+7$

$$
x \rightarrow \text { Independent Variable }
$$

b) $h=2 t^{2}-3 t$

$$
f(t)=2 t^{2}-3 t \quad t \rightarrow \text { Independent. }
$$

c) $C=4.5 \mathrm{~d}$

$$
f(d)=4.5 d
$$

$d=I$ rap moment.

We can use function notation to determine the related range value (y-value) given a value in the domain (x-value).

Example 2: If $f(x)=3 x-2$ determine the following

$$
\begin{aligned}
f(5) & =3(5)-2 \\
& =15-2 \\
& =13 \\
f(-3) & =3(-3)-2 \\
& =-9-2 \\
& =-11 \\
f(0) & =3(0)-2 \\
& =0-2 \\
& =2
\end{aligned}
$$

We can also work backwards, that is, find the input value when you know the output value.

Example 3: If $g(k)=3+2 k$ determine k so that:

$$
\begin{array}{rl}
g(k)=9 & 9=3+2 k \\
9-3 & =33+2 k \quad k=3 \\
\frac{6}{2} & =\frac{2 k}{2} \\
15 & =3+2 k \\
15-3 & =3-3+2 k \\
\frac{12}{2} & =\frac{2 k}{2} \\
6 & =k \\
g(k)=3+2 k \\
-7 & =3+2 k \\
-7-3=3 k+2 k \\
g(k)=-10 & =\frac{2 k}{2} \\
\frac{2}{2} & =-5
\end{array}
$$

